3.2.32 \(\int \frac {(e \tan (c+d x))^{3/2}}{(a+a \sec (c+d x))^2} \, dx\) [132]

3.2.32.1 Optimal result
3.2.32.2 Mathematica [F]
3.2.32.3 Rubi [A] (verified)
3.2.32.4 Maple [C] (warning: unable to verify)
3.2.32.5 Fricas [F(-1)]
3.2.32.6 Sympy [F]
3.2.32.7 Maxima [F(-1)]
3.2.32.8 Giac [F]
3.2.32.9 Mupad [F(-1)]

3.2.32.1 Optimal result

Integrand size = 25, antiderivative size = 316 \[ \int \frac {(e \tan (c+d x))^{3/2}}{(a+a \sec (c+d x))^2} \, dx=\frac {e^{3/2} \arctan \left (1-\frac {\sqrt {2} \sqrt {e \tan (c+d x)}}{\sqrt {e}}\right )}{\sqrt {2} a^2 d}-\frac {e^{3/2} \arctan \left (1+\frac {\sqrt {2} \sqrt {e \tan (c+d x)}}{\sqrt {e}}\right )}{\sqrt {2} a^2 d}+\frac {e^{3/2} \log \left (\sqrt {e}+\sqrt {e} \tan (c+d x)-\sqrt {2} \sqrt {e \tan (c+d x)}\right )}{2 \sqrt {2} a^2 d}-\frac {e^{3/2} \log \left (\sqrt {e}+\sqrt {e} \tan (c+d x)+\sqrt {2} \sqrt {e \tan (c+d x)}\right )}{2 \sqrt {2} a^2 d}-\frac {4 e^3}{3 a^2 d (e \tan (c+d x))^{3/2}}+\frac {4 e^3 \sec (c+d x)}{3 a^2 d (e \tan (c+d x))^{3/2}}+\frac {2 e^2 \operatorname {EllipticF}\left (c-\frac {\pi }{4}+d x,2\right ) \sec (c+d x) \sqrt {\sin (2 c+2 d x)}}{3 a^2 d \sqrt {e \tan (c+d x)}} \]

output
1/2*e^(3/2)*arctan(1-2^(1/2)*(e*tan(d*x+c))^(1/2)/e^(1/2))/a^2/d*2^(1/2)-1 
/2*e^(3/2)*arctan(1+2^(1/2)*(e*tan(d*x+c))^(1/2)/e^(1/2))/a^2/d*2^(1/2)+1/ 
4*e^(3/2)*ln(e^(1/2)-2^(1/2)*(e*tan(d*x+c))^(1/2)+e^(1/2)*tan(d*x+c))/a^2/ 
d*2^(1/2)-1/4*e^(3/2)*ln(e^(1/2)+2^(1/2)*(e*tan(d*x+c))^(1/2)+e^(1/2)*tan( 
d*x+c))/a^2/d*2^(1/2)-2/3*e^2*(sin(c+1/4*Pi+d*x)^2)^(1/2)/sin(c+1/4*Pi+d*x 
)*EllipticF(cos(c+1/4*Pi+d*x),2^(1/2))*sec(d*x+c)*sin(2*d*x+2*c)^(1/2)/a^2 
/d/(e*tan(d*x+c))^(1/2)-4/3*e^3/a^2/d/(e*tan(d*x+c))^(3/2)+4/3*e^3*sec(d*x 
+c)/a^2/d/(e*tan(d*x+c))^(3/2)
 
3.2.32.2 Mathematica [F]

\[ \int \frac {(e \tan (c+d x))^{3/2}}{(a+a \sec (c+d x))^2} \, dx=\int \frac {(e \tan (c+d x))^{3/2}}{(a+a \sec (c+d x))^2} \, dx \]

input
Integrate[(e*Tan[c + d*x])^(3/2)/(a + a*Sec[c + d*x])^2,x]
 
output
Integrate[(e*Tan[c + d*x])^(3/2)/(a + a*Sec[c + d*x])^2, x]
 
3.2.32.3 Rubi [A] (verified)

Time = 0.78 (sec) , antiderivative size = 323, normalized size of antiderivative = 1.02, number of steps used = 5, number of rules used = 5, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.200, Rules used = {3042, 4376, 3042, 4374, 2009}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {(e \tan (c+d x))^{3/2}}{(a \sec (c+d x)+a)^2} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {\left (-e \cot \left (c+d x+\frac {\pi }{2}\right )\right )^{3/2}}{\left (a \csc \left (c+d x+\frac {\pi }{2}\right )+a\right )^2}dx\)

\(\Big \downarrow \) 4376

\(\displaystyle \frac {e^4 \int \frac {(a-a \sec (c+d x))^2}{(e \tan (c+d x))^{5/2}}dx}{a^4}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {e^4 \int \frac {\left (a-a \csc \left (c+d x+\frac {\pi }{2}\right )\right )^2}{\left (-e \cot \left (c+d x+\frac {\pi }{2}\right )\right )^{5/2}}dx}{a^4}\)

\(\Big \downarrow \) 4374

\(\displaystyle \frac {e^4 \int \left (\frac {\sec ^2(c+d x) a^2}{(e \tan (c+d x))^{5/2}}-\frac {2 \sec (c+d x) a^2}{(e \tan (c+d x))^{5/2}}+\frac {a^2}{(e \tan (c+d x))^{5/2}}\right )dx}{a^4}\)

\(\Big \downarrow \) 2009

\(\displaystyle \frac {e^4 \left (\frac {a^2 \arctan \left (1-\frac {\sqrt {2} \sqrt {e \tan (c+d x)}}{\sqrt {e}}\right )}{\sqrt {2} d e^{5/2}}-\frac {a^2 \arctan \left (\frac {\sqrt {2} \sqrt {e \tan (c+d x)}}{\sqrt {e}}+1\right )}{\sqrt {2} d e^{5/2}}+\frac {a^2 \log \left (\sqrt {e} \tan (c+d x)-\sqrt {2} \sqrt {e \tan (c+d x)}+\sqrt {e}\right )}{2 \sqrt {2} d e^{5/2}}-\frac {a^2 \log \left (\sqrt {e} \tan (c+d x)+\sqrt {2} \sqrt {e \tan (c+d x)}+\sqrt {e}\right )}{2 \sqrt {2} d e^{5/2}}+\frac {2 a^2 \sqrt {\sin (2 c+2 d x)} \sec (c+d x) \operatorname {EllipticF}\left (c+d x-\frac {\pi }{4},2\right )}{3 d e^2 \sqrt {e \tan (c+d x)}}-\frac {4 a^2}{3 d e (e \tan (c+d x))^{3/2}}+\frac {4 a^2 \sec (c+d x)}{3 d e (e \tan (c+d x))^{3/2}}\right )}{a^4}\)

input
Int[(e*Tan[c + d*x])^(3/2)/(a + a*Sec[c + d*x])^2,x]
 
output
(e^4*((a^2*ArcTan[1 - (Sqrt[2]*Sqrt[e*Tan[c + d*x]])/Sqrt[e]])/(Sqrt[2]*d* 
e^(5/2)) - (a^2*ArcTan[1 + (Sqrt[2]*Sqrt[e*Tan[c + d*x]])/Sqrt[e]])/(Sqrt[ 
2]*d*e^(5/2)) + (a^2*Log[Sqrt[e] + Sqrt[e]*Tan[c + d*x] - Sqrt[2]*Sqrt[e*T 
an[c + d*x]]])/(2*Sqrt[2]*d*e^(5/2)) - (a^2*Log[Sqrt[e] + Sqrt[e]*Tan[c + 
d*x] + Sqrt[2]*Sqrt[e*Tan[c + d*x]]])/(2*Sqrt[2]*d*e^(5/2)) - (4*a^2)/(3*d 
*e*(e*Tan[c + d*x])^(3/2)) + (4*a^2*Sec[c + d*x])/(3*d*e*(e*Tan[c + d*x])^ 
(3/2)) + (2*a^2*EllipticF[c - Pi/4 + d*x, 2]*Sec[c + d*x]*Sqrt[Sin[2*c + 2 
*d*x]])/(3*d*e^2*Sqrt[e*Tan[c + d*x]])))/a^4
 

3.2.32.3.1 Defintions of rubi rules used

rule 2009
Int[u_, x_Symbol] :> Simp[IntSum[u, x], x] /; SumQ[u]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 4374
Int[(cot[(c_.) + (d_.)*(x_)]*(e_.))^(m_)*(csc[(c_.) + (d_.)*(x_)]*(b_.) + ( 
a_))^(n_), x_Symbol] :> Int[ExpandIntegrand[(e*Cot[c + d*x])^m, (a + b*Csc[ 
c + d*x])^n, x], x] /; FreeQ[{a, b, c, d, e, m}, x] && IGtQ[n, 0]
 

rule 4376
Int[(cot[(c_.) + (d_.)*(x_)]*(e_.))^(m_)*(csc[(c_.) + (d_.)*(x_)]*(b_.) + ( 
a_))^(n_), x_Symbol] :> Simp[a^(2*n)/e^(2*n)   Int[(e*Cot[c + d*x])^(m + 2* 
n)/(-a + b*Csc[c + d*x])^n, x], x] /; FreeQ[{a, b, c, d, e, m}, x] && EqQ[a 
^2 - b^2, 0] && ILtQ[n, 0]
 
3.2.32.4 Maple [C] (warning: unable to verify)

Result contains complex when optimal does not.

Time = 5.27 (sec) , antiderivative size = 638, normalized size of antiderivative = 2.02

method result size
default \(-\frac {\sqrt {2}\, \left (-\frac {e \left (-\cot \left (d x +c \right )+\csc \left (d x +c \right )\right )}{\left (1-\cos \left (d x +c \right )\right )^{2} \csc \left (d x +c \right )^{2}-1}\right )^{\frac {3}{2}} \left (\left (1-\cos \left (d x +c \right )\right )^{2} \csc \left (d x +c \right )^{2}-1\right )^{2} \left (-3 i \sqrt {\csc \left (d x +c \right )-\cot \left (d x +c \right )+1}\, \sqrt {2-2 \csc \left (d x +c \right )+2 \cot \left (d x +c \right )}\, \sqrt {\cot \left (d x +c \right )-\csc \left (d x +c \right )}\, \operatorname {EllipticPi}\left (\sqrt {\csc \left (d x +c \right )-\cot \left (d x +c \right )+1}, \frac {1}{2}-\frac {i}{2}, \frac {\sqrt {2}}{2}\right )+3 i \sqrt {\csc \left (d x +c \right )-\cot \left (d x +c \right )+1}\, \sqrt {2-2 \csc \left (d x +c \right )+2 \cot \left (d x +c \right )}\, \sqrt {\cot \left (d x +c \right )-\csc \left (d x +c \right )}\, \operatorname {EllipticPi}\left (\sqrt {\csc \left (d x +c \right )-\cot \left (d x +c \right )+1}, \frac {1}{2}+\frac {i}{2}, \frac {\sqrt {2}}{2}\right )+10 \sqrt {\csc \left (d x +c \right )-\cot \left (d x +c \right )+1}\, \sqrt {2-2 \csc \left (d x +c \right )+2 \cot \left (d x +c \right )}\, \sqrt {\cot \left (d x +c \right )-\csc \left (d x +c \right )}\, \operatorname {EllipticF}\left (\sqrt {\csc \left (d x +c \right )-\cot \left (d x +c \right )+1}, \frac {\sqrt {2}}{2}\right )-3 \sqrt {\csc \left (d x +c \right )-\cot \left (d x +c \right )+1}\, \sqrt {2-2 \csc \left (d x +c \right )+2 \cot \left (d x +c \right )}\, \sqrt {\cot \left (d x +c \right )-\csc \left (d x +c \right )}\, \operatorname {EllipticPi}\left (\sqrt {\csc \left (d x +c \right )-\cot \left (d x +c \right )+1}, \frac {1}{2}-\frac {i}{2}, \frac {\sqrt {2}}{2}\right )-3 \sqrt {\csc \left (d x +c \right )-\cot \left (d x +c \right )+1}\, \sqrt {2-2 \csc \left (d x +c \right )+2 \cot \left (d x +c \right )}\, \sqrt {\cot \left (d x +c \right )-\csc \left (d x +c \right )}\, \operatorname {EllipticPi}\left (\sqrt {\csc \left (d x +c \right )-\cot \left (d x +c \right )+1}, \frac {1}{2}+\frac {i}{2}, \frac {\sqrt {2}}{2}\right )-4 \left (1-\cos \left (d x +c \right )\right )^{3} \csc \left (d x +c \right )^{3}+4 \csc \left (d x +c \right )-4 \cot \left (d x +c \right )\right ) \sin \left (d x +c \right )}{6 a^{2} d \left (1-\cos \left (d x +c \right )\right ) \sqrt {\left (1-\cos \left (d x +c \right )\right ) \left (\left (1-\cos \left (d x +c \right )\right )^{2} \csc \left (d x +c \right )^{2}-1\right ) \csc \left (d x +c \right )}\, \sqrt {\left (1-\cos \left (d x +c \right )\right )^{3} \csc \left (d x +c \right )^{3}+\cot \left (d x +c \right )-\csc \left (d x +c \right )}}\) \(638\)

input
int((e*tan(d*x+c))^(3/2)/(a+a*sec(d*x+c))^2,x,method=_RETURNVERBOSE)
 
output
-1/6/a^2/d*2^(1/2)*(-e/((1-cos(d*x+c))^2*csc(d*x+c)^2-1)*(-cot(d*x+c)+csc( 
d*x+c)))^(3/2)*((1-cos(d*x+c))^2*csc(d*x+c)^2-1)^2*(-3*I*(csc(d*x+c)-cot(d 
*x+c)+1)^(1/2)*(2-2*csc(d*x+c)+2*cot(d*x+c))^(1/2)*(cot(d*x+c)-csc(d*x+c)) 
^(1/2)*EllipticPi((csc(d*x+c)-cot(d*x+c)+1)^(1/2),1/2-1/2*I,1/2*2^(1/2))+3 
*I*(csc(d*x+c)-cot(d*x+c)+1)^(1/2)*(2-2*csc(d*x+c)+2*cot(d*x+c))^(1/2)*(co 
t(d*x+c)-csc(d*x+c))^(1/2)*EllipticPi((csc(d*x+c)-cot(d*x+c)+1)^(1/2),1/2+ 
1/2*I,1/2*2^(1/2))+10*(csc(d*x+c)-cot(d*x+c)+1)^(1/2)*(2-2*csc(d*x+c)+2*co 
t(d*x+c))^(1/2)*(cot(d*x+c)-csc(d*x+c))^(1/2)*EllipticF((csc(d*x+c)-cot(d* 
x+c)+1)^(1/2),1/2*2^(1/2))-3*(csc(d*x+c)-cot(d*x+c)+1)^(1/2)*(2-2*csc(d*x+ 
c)+2*cot(d*x+c))^(1/2)*(cot(d*x+c)-csc(d*x+c))^(1/2)*EllipticPi((csc(d*x+c 
)-cot(d*x+c)+1)^(1/2),1/2-1/2*I,1/2*2^(1/2))-3*(csc(d*x+c)-cot(d*x+c)+1)^( 
1/2)*(2-2*csc(d*x+c)+2*cot(d*x+c))^(1/2)*(cot(d*x+c)-csc(d*x+c))^(1/2)*Ell 
ipticPi((csc(d*x+c)-cot(d*x+c)+1)^(1/2),1/2+1/2*I,1/2*2^(1/2))-4*(1-cos(d* 
x+c))^3*csc(d*x+c)^3+4*csc(d*x+c)-4*cot(d*x+c))/(1-cos(d*x+c))*sin(d*x+c)/ 
((1-cos(d*x+c))*((1-cos(d*x+c))^2*csc(d*x+c)^2-1)*csc(d*x+c))^(1/2)/((1-co 
s(d*x+c))^3*csc(d*x+c)^3+cot(d*x+c)-csc(d*x+c))^(1/2)
 
3.2.32.5 Fricas [F(-1)]

Timed out. \[ \int \frac {(e \tan (c+d x))^{3/2}}{(a+a \sec (c+d x))^2} \, dx=\text {Timed out} \]

input
integrate((e*tan(d*x+c))^(3/2)/(a+a*sec(d*x+c))^2,x, algorithm="fricas")
 
output
Timed out
 
3.2.32.6 Sympy [F]

\[ \int \frac {(e \tan (c+d x))^{3/2}}{(a+a \sec (c+d x))^2} \, dx=\frac {\int \frac {\left (e \tan {\left (c + d x \right )}\right )^{\frac {3}{2}}}{\sec ^{2}{\left (c + d x \right )} + 2 \sec {\left (c + d x \right )} + 1}\, dx}{a^{2}} \]

input
integrate((e*tan(d*x+c))**(3/2)/(a+a*sec(d*x+c))**2,x)
 
output
Integral((e*tan(c + d*x))**(3/2)/(sec(c + d*x)**2 + 2*sec(c + d*x) + 1), x 
)/a**2
 
3.2.32.7 Maxima [F(-1)]

Timed out. \[ \int \frac {(e \tan (c+d x))^{3/2}}{(a+a \sec (c+d x))^2} \, dx=\text {Timed out} \]

input
integrate((e*tan(d*x+c))^(3/2)/(a+a*sec(d*x+c))^2,x, algorithm="maxima")
 
output
Timed out
 
3.2.32.8 Giac [F]

\[ \int \frac {(e \tan (c+d x))^{3/2}}{(a+a \sec (c+d x))^2} \, dx=\int { \frac {\left (e \tan \left (d x + c\right )\right )^{\frac {3}{2}}}{{\left (a \sec \left (d x + c\right ) + a\right )}^{2}} \,d x } \]

input
integrate((e*tan(d*x+c))^(3/2)/(a+a*sec(d*x+c))^2,x, algorithm="giac")
 
output
integrate((e*tan(d*x + c))^(3/2)/(a*sec(d*x + c) + a)^2, x)
 
3.2.32.9 Mupad [F(-1)]

Timed out. \[ \int \frac {(e \tan (c+d x))^{3/2}}{(a+a \sec (c+d x))^2} \, dx=\int \frac {{\cos \left (c+d\,x\right )}^2\,{\left (e\,\mathrm {tan}\left (c+d\,x\right )\right )}^{3/2}}{a^2\,{\left (\cos \left (c+d\,x\right )+1\right )}^2} \,d x \]

input
int((e*tan(c + d*x))^(3/2)/(a + a/cos(c + d*x))^2,x)
 
output
int((cos(c + d*x)^2*(e*tan(c + d*x))^(3/2))/(a^2*(cos(c + d*x) + 1)^2), x)